# CompA: Addressing the Gap in Compositional Reasoning in Audio-Language Models Sreyan Ghosh Ashish Seth Sonal Kumar Muthar Chandra Kiran Evuru S.Ramaneswaran S. Sakshi Oriol Nieto Ramani Duraiswami Dinesh Manocha

# Understanding Compositional Reasoning in ALMs

- What are Audio-Language Models? Audio-Language Models (ALMs) like Contrastive Language-Audio Pre-training (CLAP) learn a shared space between the audio and language modalities, which allows them to solve audio tasks through a language interface.
- What is Compositional Reasoning? Compositional Reasoning, characterized as the ALM's capability to understand the interrelationships among multiple discrete acoustic events in audio, such as order of occurrence and attribute-binding, as conveyed through the words in the caption.

The extent to which ALMs can perform compositional reasoning is largely under-explored. Our work aims to bridge this gap by evaluating and improving compositional reasoning in ALMs.

## Motivation: Why are current benchmarks insufficient for evaluating compositional reasoning in ALMs?

#### Rethinking Evaluation of Compositional Reasoning in ALMs

- Current retrieval benchmarks are insufficient in evaluating the compositional reasoning of ALMs.
- Figure 1 shows CLAP undergoes only minor degradation in retrieval performance when the word order in captions is shuffled.
- Previous studies also show that ALMs often act as a bag of words and lack natural language comprehension.



Figure 1. Performance on common retrieval evaluation datasets with shuffling.

#### **CompA-order/attribute: A Novel Benchmark for evaluating Compositional Reasoning in ALMs**

| CompA-Order<br>→ Order ★ Overlap<br>Captions                     |              |              |              | CompA-Attribute                     |
|------------------------------------------------------------------|--------------|--------------|--------------|-------------------------------------|
| "The growl of a tiger <b>succeeded</b><br>by human conversation" | $\checkmark$ | $\approx$    | $\approx$    | Captions                            |
| "Human conversation <b>succeeded</b><br>by the growl of a tiger" | $\approx$    | $\checkmark$ | $\approx$    | "A baby cries while a woman laughs" |
| "The growl of a tiger <b>amidst</b><br>human conversation."      | $\approx$    | $\approx$    | $\checkmark$ | "A woman cries while a baby laughs" |

In this work, we perform the first systematic study for understanding compositional reasoning capability in ALMs. We propose two expert-annotated benchmarks, **CompA-order** and **CompA**attribute. While CompA-order is used to evaluate the ALMs ability to understand the order of occurrence between two acoustic events in a audio, CompA-attribute is used to evaluate the models' ability to understand attribute-binding for acoustic events.

### CompA-661K: A balance dataset for learning Compositional **Reasoning in ALMs**

- There is an acute scarcity of compositional audios in large audio-text pre-training datasets.
- To address this issue. We introduce a **CompA-661k** dataset, with  $\approx$ 661k unique audio-caption pairs, which have a uniform distribution of audios with a number of unique acoustic events as compared to the previously used training datasets.

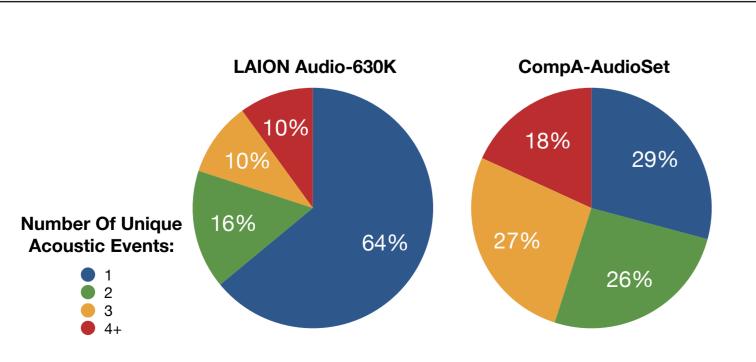


Figure 2. Distribution of audios with number of unique acoustic events: LAION-Audio-630k Vs CompA-AudioSet <sup>+</sup>University of Maryland, College Park, <sup>\*</sup>NVIDIA, Bangalore, India, <sup>+</sup>Adobe, USA



#### **CompA-CLAP: Contrastive Pre-Training with Compositional Aware Hard Negatives**

**Motivation:** To teach the ALMs compositional reasoning, we modify the vanilla contrastive learning objective and introduce compositionally aware hard negative captions for each audio in the batch. **Compositionally-Aware Hard Negatives** 

- Each audio sample in the training batch is paired with hard negative captions (generated using GPT4) that are ignored by other samples, ensuring targeted and effective learning.
- This training approach significantly improves the model's ability to differentiate subtle differences and relationships between audio events

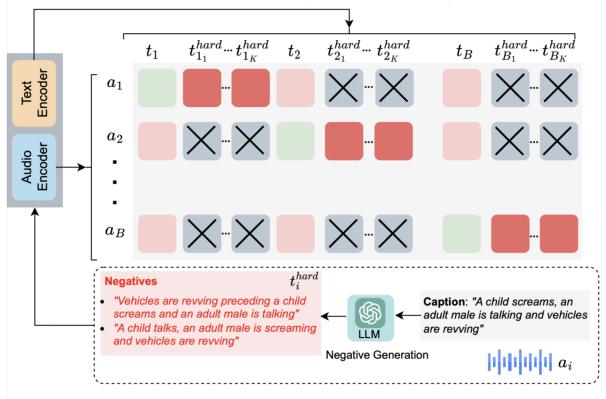


Figure 3. Contrastive training with hard negatives

#### Training Objective Function:

 $\mathcal{L}^{S_1} = \frac{1}{2B} \sum_{i=1}^{D} \left( \alpha_1 \ell_i^{t2a} + \alpha_2 \ell_i^{a2t} \right)$  $\ell_i^{t2a} = -t_i^{\mathsf{T}} a_i / \sigma + \log \sum_{j=1}^{D} \exp \left( \frac{1}{2} \sum_{j=1}^{D} e^{i t_j} \right)$  $\ell_i^{a2t} = -a_i^{\mathsf{T}} t_i / \sigma + \log \left( \sum_{i=1}^B \exp\left(a_i^{\mathsf{T}} t_j / \sigma\right) \right)$ 

# **Results: Zero-Shot evaluation on standard benchmarks**

| Model             | T-A Retrieval |             |                    | A-T Retrieval             |                    |             |  |
|-------------------|---------------|-------------|--------------------|---------------------------|--------------------|-------------|--|
|                   | R@1           | R@5         | R@10               | R@1                       | R@5                | R@10        |  |
| MMT               | 36.1 / 6.7    | 72.0 / 21.6 | 84.5 / 33.2        | 39.6 / 7.0                | 76.8 / 22.7        | 86.7 / 34.6 |  |
| ML-ACT            | 33.9 / 14.4   | 69.7 / 36.6 | 82.6 / 49.9        | 39.4 / 16.2               | 72.0 / 37.6        | 83.9 / 50.2 |  |
| CLAP              | 34.6 / 16.7   | 70.2 / 41.1 | 82.0 / 54.1        | 41.9 / 20.0               | 73.1 / 44.9        | 84.6 / 58.7 |  |
| CLAP-LAION        | 36.2 / 17.2   | 70.3 / 42.9 | 82.5 / 55.4        | <u>45.0</u> / <b>24.2</b> | 76.7 / <u>51.1</u> | 88.0 / 66.9 |  |
| CLAP (ours)       | 35.9 / 17.0   | 78.3 / 44.1 | 89.6 / <b>56.9</b> | 47.8 / 23.8               | 83.2 / 51.8        | 90.7 / 67.8 |  |
| CompA-CLAP (ours) |               |             |                    |                           |                    |             |  |

Table 1. Result comparison on retrieval benchmarks (AudioCap/Clotho)

Table 1, 2 shows the performance comparison CompA-CLAP with baselines on benchmark datasets. While our CLAP SoTA perforachieves mance in almost all cases, CompA-CLAP retains its performance even after fine-tuning for compositionality.

|                        | ESC-50      | US8K        | VGGSound    | FSD50K |
|------------------------|-------------|-------------|-------------|--------|
| Wav2CLIP               | 41.4        | 40.4        | 10.0        | 43.1   |
| AudioClip              | 69.4        | 65.3        | -           | -      |
| CLAP                   | 82.6        | 73.2        | -           | 58.6   |
| CLAP-LAION-audio-630K  | 88.0        | 75.8        | 26.3        | 64.4   |
| CLAP-CompA-661k (ours) | 90.2        | 86.1        | <u>29.1</u> | 77.8   |
| CompA-CLAP (ours)      | <u>89.1</u> | <u>85.7</u> | 29.5        | 77.4   |
|                        |             |             |             |        |

Table 2. Result comparison on audio classification benchmarks.

# **Results: Evaluation on CompA-order/attribute benchmarks**

Table 3 compares the results of CompA-CLAP on CompA-order/attribute benchmarks. Our vanilla CLAP performs better all other baselines literature, outperfrom CLAP-LAION forming by **≈6%-33%** over both CompAbenchmarks. CLAP, which is CLAP trained consecutively with hard negatives and modular contrastive learning, improves performance on both benchmarks by **≈10%-28%** over CLAP.

|                                                                      | CompA-order CompA |                     |               |                                      |                |  |
|----------------------------------------------------------------------|-------------------|---------------------|---------------|--------------------------------------|----------------|--|
| Model                                                                | •                 | aer<br><b>Group</b> |               | •                                    |                |  |
|                                                                      | 91.20<br>19.70    |                     | 80.30<br>25.0 | 82.40<br>25.0                        | 79.80<br>16.67 |  |
| ML-ACT<br>CLAP<br>CLAP-LAION<br>CompA-CLAP (ours)<br>- Hard Negative | <br>8.00          | 20.20               | 39.27         | 5.11<br>6.14<br>6.52<br><b>22.52</b> | 11.35          |  |

Table 3. Result comparison on our proposed CompA benchmarks

$$\exp\left(t_i^{\mathsf{T}} a_j / \sigma\right) _{K}$$

$$+\sum_{k=1}^{K}\exp\left(a_{i}^{\mathsf{T}}t_{i_{k}}^{\mathsf{hard}}/\sigma\right)$$

# CompA-CLAP: Modular Contrastive Learning for Fine-grained Understanding

**Motivation:** Contrastive Pretraining with hard negatives still requires compositional audios and their corresponding captions. Further, an audio with a large number of acoustic events makes fine-grained learning difficult. To overcome these issues, we propose a Template-based algorithm for creating compositionally rich audio-caption creation. Next, we propose Modular Contrastive training for fine-grained understanding

#### Template-based synthetic creation of audio-caption pairs

- We propose a simple and scalable template-based approach to create compositional audio
- An LLM first generates a scene from a pool of available acoustic events from which we perform simple operations to generate compositional audio and their captions.

#### Modular Contrastive Learning

- Our proposed Modular Contrastive training employs multiple positives and negatives for each audio, generated using a template-based algorithm.
- Each positive describes compositional relationships of various granularities in the audio and this helps the model learn fine-grained order and attribute binding.

#### Training Objective Function:

$$\mathcal{L}^{S_2} = \frac{1}{2B} \sum_{i=1}^{B} \left( \beta_1 \ell_i^{t2a} + \beta_2 \ell_i^{a2t} \right)$$
$$\ell_i^{t2a} = -\left( \frac{1}{K^{pos}} \sum_{k=1}^{K^{pos}} (t_{i_k}^{pos})^{\mathsf{T}} a_i / \sigma \right) + \log \sum_{j=1}^{B} \exp\left( t_i^{\mathsf{T}} a_j / \sigma \right)$$
$$\ell_i^{a2t} = -\left( \frac{1}{K^{pos}} \sum_{k=1}^{K^{pos}} a_i^{\mathsf{T}} t_{i_k}^{pos} / \sigma \right) + \log\left( \sum_{j=1}^{B} \exp\left( a_i^{\mathsf{T}} t_j / \sigma \right) + \sum_{k=1}^{K^{neg}} \exp\left( a_i^{\mathsf{T}} t_{i_k}^{neg} / \sigma \right) \right)$$

**Notations**:  $\ell^{t2a}$ ,  $\ell^{a2t}$  is the contrastive losses for text and audio respectively.  $(t_{i_k}^{hard})_{k \in [1,K]}$  is the  $k^{th}$  negative caption for audio sample  $a_i$ .  $(t_{i_k}^{pos})_{k \in [1, K^{pos}]}$  and  $(t_{i_k}^{neg})_{k \in [1, K^{neg}]}$  are  $k^{th}$  generated finegrained positive and negative caption for audio sample  $a_i$ .  $\beta_1$  and  $\beta_2$  are scaling parameters.

# **Evaluation Metric: For evaluating CompA-order/attribute**

Given two audios  $A_0$  and  $A_1$  and their corresponding captions  $C_0$ and  $C_1$ , we define a text score  $f(\cdot)$  and an audio score  $g(\cdot)$ w.r.t the ALMs capability to select texts given audio and audios given text respectively. We also define a group score  $h(\cdot)$ , combining text and audio scores.

# **Future Work**

- Expand the CompA Benchmarks: Introduce more complex compositional scenarios to further push ALMs capabilities.
- Refine Training Techniques: Continue to develop training and real-world variability.
- Cross-Modal Applications: Explore the application of composi-

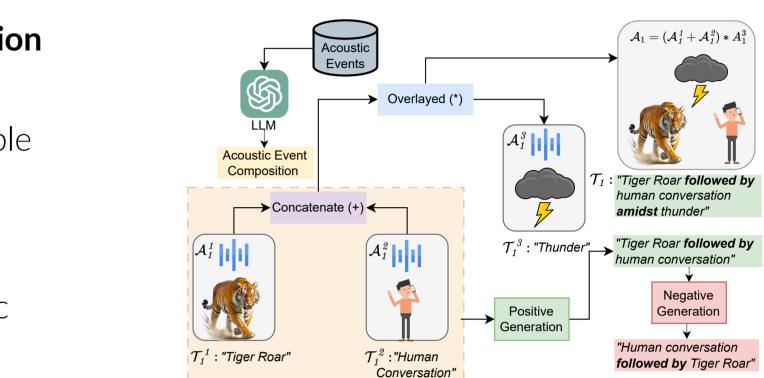


Figure 4. Illustration of template-based audio synthesis

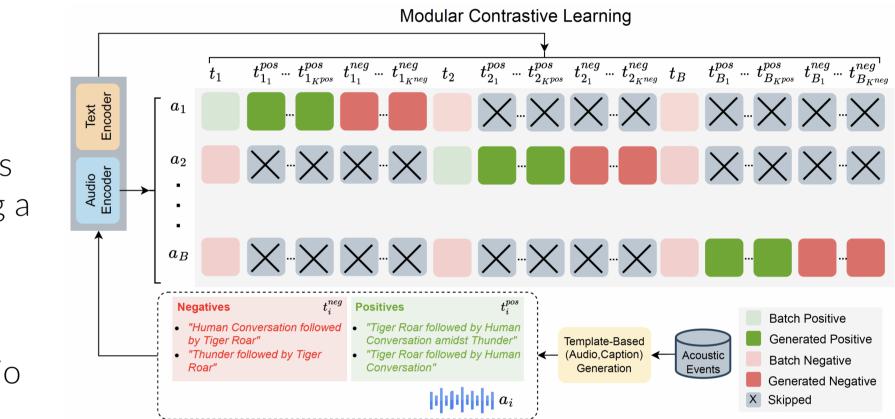


Figure 5. Illustration of Modular Contrastive training with multiple positive and negative caption

- if  $s(C_0, A_0) > s(C_1, A_0)$  and  $s(C_1, A_1) > s(C_0, A_1)$  $f(C_0, A_0, C_1, A_1) = \cdot$ otherwise
- $g(C_0, A_0, C_1, A_1) = \begin{cases} 1 & \text{if } s(C_0, A_0) > s(C_0, A_1) \text{ and } s(C_1, A_1) > s(C_1, A_0) \end{cases}$ otherwise
  - $h(C_0, A_0, C_1, A_1) = \begin{cases} 1 & \text{if } f(C_0, A_0, C_1, A_1) \text{ and } g(C_0, A_0, C_1, A_1) \\ 0 & \text{otherwise} \end{cases}$

methodologies to include more nuanced compositional aspects

tional reasoning skills in other modalities, such as video and text

